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Equations (2.24) with inhomogeneous terms (3.11) do not contain any non-equilibrium para- 
meters which characterize only the gaseous systems. Therefore they can be used to study non- 
equilibrium, large-scale fluctuations in fluid flows. 
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ASYMPTOTIC FORM OF SMALL DENSITY DIFFERENCES IN THE PROBLEM 
OF COHERENT PHASE TRANSFORMATIONS* 

M A GRINFEL'D . . 

Eq"aticns describing ;~n the iower approximation: the equilibrium con- 
figurations under heterogeneous, coherent phase transformations in an 
elastic, one-ccmponent medium, are derived for the asymptotic case of small 
density differences. Eoth phases are ass;lmed to be isotropic by virtue of 
the multiplicity and certain comptitational simplifications. It is shown 

that, to a first approximation, the equilibrium temperature of the non- 
hydrostatic, twc-phase configuration is identicai with the temperature of 
phase equi1ibri.L of the hydrostaticaily stressed phases in some reference 
configuraticn. In a higher approximation the system of equations of 
equilibrium obtained is identical with the equations of the classical 
linear theory of elasticity, although, on the whole, the problem remains 
essentially non-linear, since it contains an unknown boundary and certain 
boundary conditions on it, quadratic with respect to the displacement. 
The conditions obtained are further used to find the solutions of certain 
boundary value problems. 

The conditions of equilibrium obtained in /l, 2/ under coherent phase transformations 

with slippage, represent special boundary value problems for the equations of the non-linear 
theory of elasticity, with unknown boundaries. The presence of unknown boundaries of contact 
between the different phases aggravates the difficulties of the already complicated problem 
of describing the equilibrium configurations of non-linearly elastic materials (e.g. in the 

simplest problem of this type for a liquid system where the problem reduces to that of 
determining the equilibrium values of the pressures, temperture and phase masses,theeqJilibrium 
l Prikl.Matem.Mekhan.,49,4,582-592,198s 
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conditions degenerate into a complex, non-linear algebraic system). For this reason, the 

asymptotic form of a small difference in the phase densities, developed in the present paper 
using the case of coherent phase transformations in a medium that is isotropic (in both phase 
states) is of considerable interest. 

1. The conditions of equilibrium under coherent phase transformations in 
a simple, elastic, one-component material. Following /l/ we shall carry out the 
investigation using the Lagrangian variables zi and transforming somewhat, for convenience, 
the relations obtained in /l/. We shall distinguish between two isotropic elastic phases by 
labelling them with a plus and minus sign. Let us consider a homogeneous, elastic material 
in the plus phase state, and assume that the Lagrangian xi coordinate system is affine in the 
reference configuration in question, with the basis xi+. Let us next consider a second homo- 
geneous reference configurationofthesame material, in the minus phase state, and assume that 
the passage from the first configuration to the second is accompanied by the corresponding 
volume expansion-compression deformation with similarity factor d, so that the corresponding 

displacement field W(I) of the material point with coordinates ri is given by the formula 
w = (d - 1) rix,*; the basis of this configuration is given by xi- = dxi+. 

Let us consider, in zi coordinate space, the surface 5 - zi = ~'@‘),a = 1,2. According 
to /l/ the problem of describing the equilibrium in the case of coherent phase transformations 
reduces to determining the equilibrium temperture 6, the unknown boundary E of the plus phase 
displacement field u, (2) on one side of E. and of the field of (additional) displacement of 
the minus phase u_ (I) on the other side, so that the conditions a) and b) - d) would hold 
within the phases and on the interphase boundary respectively 

a) pi; ~0, b) [Vi]_+ =O, c) [pJi]_+nl=O, d) [vii]_+njnz=O (1.1) 

Here pkJ’ is the Piola-Kirchhcff stress tensor referred (for both phases) to the reference 
configuration of the plus phase; the index following the coma denotes partial differentiation, 
which in this case is identical with covariant differentiation, and c*' are the components 
of the total displacement fieldsin the basis x1+ (L, = u*, _ U = w _t u_). We further have 

v*“=J’I OL_J_ 
+ “+ P;kC’h, ,+I+‘j (1.2) 

where $* denote the free energy densities of the phases per unit mass and *ij+ (r*"), m+ are 
metric tensGrs and mass densities of the phases in the reference configurations. We denote 
by nj the components of the unit normal to +Lhe image of the surface k in the reference 
configuration of the plus phase. Using the metric volume and surface tensors corresponding 
to this configuration, we carry out covariant differentiation and "juggle" the indices (unless 
the contrary is clearly indicated). 

TG close system (1.1) (despite the CGnditiGr. that the absolute temperature is constant 
and the specifying of the particular form of the f.JnctiGn $), we must also specify the conditions 
either on the outer boundary of the body, or at infinity. 

Let us denote by ui_* the components of the field u_ in the basis xi_. The free energy 
$ of the minus phase will conveniently be specified in what foilows as a function. of the 
absolute temperature 0 and of the displacement gradients UFj. However, the derivatives of 
this function are connected with the tensor p_‘l introduced by projecting the stress tensors 
with vector components p_j /3/ GntG the basis xi+, in a vert complicated manner. To overcome 
this difficulty, 
p*j 

we shall introduce another Piola-Kirchhoff stress tensor p:i by expanding 

* over the basis of the reference configuration of the minus phase I,_. The tensors pz’ 
are ccnnected with the free energy densities q(uhC,ik.e) by the usual relations (here and 
henceforth we shall write, in order to save space, the sinilar formulas simultaneously for 
both phases, with the asterisk indicating the rr.in.us phase only! 

P;" = +,a$(~.:,~*~ e)M,,, 

Standard geometrical relations lead tc the following relation connecting the stress 
tensGr5: pc = pfji m dm_. 

Expanding $*,& in series in arguments $,I* and T = 8 - 8', we obtain 

Assuming that the phases are isotropic and the reference configurations are undistorted, 
using the relations given in /4/, we can write the expansion coefficients in the form 
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where p*", I+, JQ, K,, ai are the pressure, isothermal Lame', and the volume compression moduli, 
and the thermal expansion coefficient in the reference configurations of the phases at the 
temperature 8". 

2. Asymptotic form of the small density differences. We assume that both 
phases in question are isotropic, the reference configurations given above are undistorted, 
and that at the temperature 8" the initial pressures p*” 
are the same 

and the specific Gibb's potentials 

P+ ’ = p_’ = PI go,” + plm, = *_” + p/m_ (2.1) 

We further assume that the similarity coefficient is nearly equal to unity 

d=i-+&; 6-1, E<l (2.2) 

and the displacement fields at the outer boundary are of order E. 
In this situation it is. natural to expect that an equilibrium configuration may exist, 

containing both phases, and that the parameters of both phases will differ little from the 
reference parameters, 
boundary zi (Ea) 

so that the phase displacement fields II*, the equation of the interphase 
and the increment in the equilibrium temperature 2' will all be represented 

in the form of series in the Small parameter E 

02 

ui = Nz, E~UN*, xi (E, F) = N$, E~I~N (& T = j, CTN. (2.33 

Let us now derive the equations for determining the first non-zero terms of these expan- 
sions. We note that the functions X!N (E) are defined to within an arbitrary coordinate sub- 
stitution on the surface 5". To localize this ambiguity in the function z,,'(E) we shall seek, 
in what follows, the equation of the surface in the form 

(2.4) 

where no2 are the ccmponents of the unit ncrmal to the surface Gi (5) and the series yields 
the distance from. the surface r' (E. e) to zO'. along the normal to the latter. 

The following relations follow directly from geometrical considerations and expansions 
(2.21, (2.3) : 

CT,_= I,. (1 7 6C), I,,_= d?r.,_ = (1 - 26~ f 6%?)z,,+, (2.5) 

x 'I=(1 - _36e - 3&")J_" -- o($). u:_=u,-(1 + 6F), 

Li_'= a_{ - g,,i, u.' s U'. x-i = &X’ 

m_= m*( 1 - &jm3= m,(l - 36~ 2 66?$) T o(@') 

CorbirAnc relaticns (2.1!, (2.5: we &Cain 

*_"=$,"+ p(fn;'- m~')=J.,~-3pS~(l A 6~) ‘m, + o(P) (2.6! 

Combining further reiatloris !1.3 , cl.;;, (2.1)- (2.6; one after the other, we obtain 

Let us substitute relations (2.7' into (1.1). Equating the coefficients accompanying E 

we obtain, respectiveiy, 

a) (XI+"l.!,r: T ZpG”f),j = 0, b) [L.;]_+= 6&, (2.6) 

C) [p ($,f - z,i%f,k) - h’aTlx+‘j + h~+‘jv.h-,k + 2~?,i]_+nj0 = - 2p6?1!~ 

d) [$ (~.:,i - r7%!J - $6T1r+ij]_ L n,On j. = - 2~6 
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Here and henceforth sjM will denote the Coefficient of & in the expansion of the 
components of the unit normal to the surface separating the ghases. We can eliminate from 
the last two relations of (2.7) the terms containing the initial pressure p, using the relations 

[It,t]_+(=~*-np'no')56(~~-donlfo), fU!,j]:= (2.91 

[u!f]_+njoni~ + 26, [d,.‘)_+ nj0 = (fv!,~~]_+- 2&n!, 

(in (2.81, (2.9) all discontinuities are calculated at the surface z'& 
To prove relations (2.9), we differentiate the second relation of (2.8) in &"I ConvoLute 

the result with z~,E~~(P! is the metric tensor at the surface I'O) and use the well-known 
’ identity z$**"&~=~ = I* iii _ neitlote This yields instantly the first of the relations under proof. 

Dropping from it the index k and convoluting the result over the indices i,k, we arrive at 
the second relation. Finally, convoluting the first relation of (2.9) with R,, and using the 
second relation, we confirm the validity of the third relation. 

Using (2.9) we reduce the last pair of relations (2.8) to the form 

(bZ,'jz?.~ + 2jlV!~!]_+n~=o, [$e]-+ Tr=O (2.10) 

The second relatiqn obtained leads to an important conclusion: when @e]_'fO (which 
represents the general situation in the case of phase tranasitions of the first kind when the 
latent heat of transformation is different from zero), then the temperature of phase equilibrium 
in a heterogeneous configuration is equal, to a first approximations, to the reference tempera- 
ture 6' /5/. Therefore to determine the temperature effect we must determine T,. This can 
be done by equating terms of the second order of smallness c in the last relation of (1.1). 
Cumbersome calculations yield the formula 

m, I%]_+ T2 + ‘/s [i.cf,iJ,j i 2~~!~!)~,,, j,J_+ - /AL? AU!,! + 2pr.,. tp,.]_ (ii) *’ j + nienjo 7 i._6vfe+ i_ 2~_~v~~~_~i~n~~ (2.11) 

This functional equaticn also plays a major role in determining the position of the un- 
known interphase boundary /5/. We shall therefore present here the key concepts and formulas 
necessary to determine it. 

Let us differentiate the last equation of (1.1) covariantly twice with respect to the 
scalar parameter f /6/ (naturally, after substituting the series (2.3)). Taking into account 
relations (2.1), the homogeneity of the reference configurations and the properties of the 
&I&- derivative we obtain, for E= ii , 

(2.12) 

ic is the "velocity" of the boundary induced by varying the parameter E). 
Using the relations 11.2!--!1.4?, (2.31, (2.5)-ii.;?, (2.10: we obtain (;a is the syzbcl 

of covariant differentiation with respect to the cocrdinate g' on the surface =? (B) 
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(remembering that all discontinuities axe calculated at the surface &(f)). 
We note that when p = 0 (2.15) inPtant~y yields relation (2.12). However, to show the 

universal character of the latter we must show that the coefficient accompanying p in (2.15) 
vanishes. Substituting (2.2), (2.3) into (3.11 and equating the coefficients of ~0, we obtain 

lu',]_+-+ fI$j)-+ R& = &If& (2.16) 

Let us now differentiate (2.16) in E" 
Using the notation b ‘= b 

and convolute the result with the tensor z~,&~~,. 

form of the surface :B, 
up r-0 1.0 ,daz’fl = -nio+;$ where baR is the coefficient of the second quadratic 

we obtain 

Neglecting the index k in (Z-17? and convoluting with respect to i, k, we obtain a relation 

which can be reduced, using (2.9) and the identity &,r~,,,= 0, to the form 

Iul,i&’ ‘~L!n>o - [ul, ,.>I_+ - [I,( j]_+Ol; &y,rl;O f a,iyoj”, [uf,jl -“f,~Pzj~+]_+ = 0 (2.15) 

Now we can confirm that the coefficient of p in (2.15) vanishes, using relations (2.9), 
(2.18) and 

1:s [c.‘,fl’;. 1- If&J_-- [q&l -G., li *“f,i]_+” io”p = - ba- E$, <_ + tiCf,&pjO (2.19) 

Relation (2.19) can be obtained from the following four relations: 

[z.f,>l.~,j]_* L7 2+_ (h$,$24)-)- (h'nlO+ 2Q2 (2.20) 

r,-:, ,+, i)_- = 2C:,j_hjn,0 + 26 ($,_ - L.f,f_niO,ljO + n) - (h'~2 

[I :;I; ,‘.]I n7,r * = ‘.):;h,“,,* .L l-:,‘_nl<,T?,,lAl;‘ -+ (h’litOP 

IC”,l,i f]_-nzl’*i 
;: 

,” = I’, j_nicnp \i:’ chu 7 26) 7 hiq (i r;,_ + h)‘n,* + 3) 

Here h* EE [i:, ]_+nfi . To establish relations (2.20) we must use (2.9) and the following 
expression for the discontin-ity of the product: 

lob]_+ = 0.. It].' T b_ [Cl]_+ + ICI)_* lb].+ 

Melting, regarded as a transformation of the solid phase into the liquid phase, can be 
referred to a number of phase transitions with slippage, for which the asymptotic form of 
small density differences was developed in /5/* (*See also: Grinfel'd M.A. Heterogeneous 
systems with phase transition surfaces (application of variational principles. Doctorate 
Dissertation, Institute cf Terrestriai Physics, Mcscow, 1983). 

It can however be shown, that in the case when one of the phases is liquid, the relations 
(2.5, a, bl, (2.10:, (2.11) lead to eq)uations obtained for the case of melting in the papers 
mentioned. 

Indeed, let the minus phase be liquid ()I_= '1) and occupy the volume V within the plus 
phase in the equilibrium ccnfiguration. In this case the first equation of (2.83 for the 
minus phase yields 

i:,,,_eN=COnPt. zCz1' (2.2') L, 

The first relation cf (2.10 car, new be written in the form 

(i.*Vf,,_3*'. - , ?)I_‘.‘: 2.:) nj, = K_H”J (2.22: 

Integrating Ec_.'2.21: c~.er the finite ;:olume V ad using the relation (2.8c) , we obtain 

Hi' _ c d1.r i:;__ = \ i"l*jfipg= \ d: [; '_ - &")lz,* = (2.23) 

c i 

Further, using the last rektiO7i of 12.9) and first relation of (2.10), as well as p-=0, 

NOW, using (2.24) we reduce (2.11) to the fonr; 

2m,[~]_-~TZ~ i.,~~~,.r~,~_f ~~+I',:I!L.,,~+S_ Z_N~--2K_H(cf,1_- .3/m+)= 0 (2.25) 

This completes all conditions of equilibrium of /5/. 

3. Determination of the parameters of the ellipsoidal equilibrium inclusions 
of the solid phase. we shall consider, in the small denisty difference approximation, the 
problem of bounded equilibrium inclusions of the solid phase for the case of coherent trans- 

formations and the displacement field u', linear at infinity (in the case of phase transitions 
with slippage the problem was discussed in /5, ?/**(**See the previous footnote) 

lim U+'(I)= djrj (3.1) 
XL, 
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We shall seek an equilibrium inclusion in the form of a triaxial ellipsoid, and the field 
v'* in the form (compare with /7/) 

Vi_ = ~ijtj* vi+ = -& ’ ‘p,i + XifZj (3.2) 

where cc is the Newtonian potential of the corresponding ellipsoid of unit density, and filj 
and y are constants. The inner potential of the homogeneous ellipsoid with the centre at the 
origin of coordinates is a quadratic form 

~=~~-r/*(l)ifZitj* (PO,Oif-CQIlSt (3.3) 

Its coefficients are defined by the oriented and form of the ellipsoid. Knowing them, 
we can solve the inverse problem and find the orientation and magnitudes of the excentricities. 

Inside and outside the body the potential satisfies the equations 

a) q,.fi =-43, b) rp,$ = 0 (3.4) 

so that ofi= 4.-r. Moreover, the potential p vanishes at infinity (together with all derivatives), 
is continuous at the boundary Z of the ellipsoid together with the first derivatives, and 
the discontinuitiesinthe second derivatives at the boundary z satisfy the compatibility 
relations [Cpsijl_+ = ~JKN,N~ (.V, is the unit normal to the ellipsoid surface). It can be shown 
that the functions L',* defined by relations (3.2) satisfy the equations of equilbrium and 
the boundary condition at infinity. Combining the compatibility relations with (3.2), (3.31, 
we obtain 

L'i,j_ jr = y(.l.J,- &o,j)l x,, (3.5) 

Using (3.11-(3.5) we can write the second boundary condition of (2.8) and the first 
condition of (2.10) as linear forms of the coordinates z' and as components of the unit normal 
Ni respectively. Since the choice of these quantities on the ellipsoid surface is arbitrary, 
we conclude that the necessary condition for the solution of the type shown to exist is, that 
the following relations connecting the constants hold: 

We shall consider the relations 13.4), (3.61, !3.7) as a system of equations in w'j, p", y, 
From (3.6) it follows that ([ii) is the symbcl of alternation) 

~[Gl=x[:il (3.8) 

Symmetrizing system (3.6), m-dltiplying it by 2~, and combining the resulting expression 
with 13.7!, we obtain 

B,'j' = Lz!;, - i._iV ,i: - 2$L_ (;‘ - fi! 
1' #L_ - !I*: 

= P&r" (3.9) 

Ccmbinin9 (3.6! and (3.9) we have 

Jj = + [x(C) _ (p T ,,) sij)] (3.10) 

It remains to determine the constants y and p. Tc dc this, we ccnvclute i3.9), (3.10) 
over the free indices. Using (3.4: we obtain a syste- whose solution yields 

(K_ -K I %rT\ - 3K_I+ 
Y= K_f,;,iP , 8= 

v* -“sr+,Xlk -4P+b 
T 3L-r4p+ (3.11) 

In order for the functicns (3.2) tc provide a solution totheproblem of phase equilibrium, 
it is alsc necessary that the relation (2.11) should hold at all points of the ellipsoid surface. 
Using the relations (3.2), (3.5), (3.C2;- (3.11) we confirm that the latter requirement will be 
satisfied, provided that the temperature T, is given by the formula (ui5 denote the stresses 
at infinity) 

- zm, [$0]_’ T? =& (a”,)2 + & (3.12) 

4c(+Y (K-H - ~,y - &+ o!,)] $ K-H* - 

2K_H(+J&~) 

&=h * xTnz’j_ 2 p+xCij) 
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The solution shows that in the case in question the stress in the ellipsoidal including 
is hydrostatic, and the equilibrium temperature, the form of the ellipsoid and the stress state 
outside it, are all described by the same relations as in the case of the transition of an 
isotropic solid to the liquid state. fn this connection numerous other relations obtained in 
the papers cited also remain valid. 

We note that the posssibility of constructing solutions with the inclusion of a new phase 
in the form of an ellipsoid, is connected only with the conditionofcoherence, the isotropic 
character of the matrix, the possibility of approximating the free energy density of the matrix 
by expanding the second-order infinitesimalsin the displacement gradients, and the constancy 
of these gradients at infinity. At the same time, the assumption of the isotropic character 
and the linear elasticity of the inclusion , and of the special character of the affine 
"characteristic" deformation Ail, does not in any way represent a significant restriction 
when constructing solutions of the type shown. In particular, in the case of isotropic phases 
but of an arbitrary intrinsic deformation tensor, the relations obtained in /6/ can be used 
to find the following formulas generalizing (3.91, (3.10) : 

(3.13) 

From (3.13) it follows that the ellipsoid is coaxial with the tensor 0';. and the latter, 
in turn, is coaxial with the stress tensor at infinity in the case of melting (p_ = O),or in 
the case of intrinsic tensile volume deformation A,, = Sxzj. In the case of volume expansion 
at infinity the ellipsoid is coaxial with the intrinsic deformation tensor ALrij,. In the 
remaining cases the orientation of the ellipsoid is governed by both factors, by the character 
of the deformations at infinity, and by the intrinsic deformation of the transformation. 

4. Heterogeneous configuration with homogeneous stress-strain states of 
the phases. First we use the relations of Sect.2 as the basis for investigating the prcblea 
of equilibrium coexistence of the half-spaces composed of different isotropic elastic phases 
subjected tc affine deformation. Thus , let the plus(minus) phase be subjected to affine 
deformation L.,* = x!:_P.' ($_ = y.$rj) relative tr its reference configuration, where Xl: ;i are 
constant tensors. 1f the above-spaces are in the state of complete thermodynamic equilibrium 
along the plane fi,r'= b, (we can assr?ze without loss of generality that the vector t, is 
normalized to unity and therefore ccincicies with the unit normal to +be plane n,}, then by 
virtue of the conditions cf equiiibriuz i2.61, (2.10)) (2.il; the fellowing algebraic relations 
must hold (the equations of ec$ilibrl.~x within the phases are in this case satisfied automati- 

cally): 
(Xi;]_ .j - 62 /+& - -0 (4.i) 

[i&P t z@Gq_+ n, ?.!Y. il 

Differentiating the first of these relations with respect tothe coordinates in the plane 
En and convoluting the result with xi?. we obtain 

[%>kJ_+ = hink -I 6 (ii& - )f*Rk) (hi eC [%ij]_+nj) 

Only six of the nine relations of (4.2) are independent, since (4.2) becomes an identity 

when convoluted with the vector nh. Consequently, 
in the last pair of system [4.1! and (4.2) 

the ten independe$t relations appearing 
connect 18 constants q, two independent components 

of the unit normal n,, and the increment in the equilibrium temperature T,. Thus, to determine 
uniquely the piecewise homogeneous equilibrium configuration of the half-spaces in question, 

we can specify arbitrarily e.g. the affine deformation of the plus phase and the orientation 
of the boundary of separation ni. 

To determine to conjugate equilibrium stress -strain state of the minus phase (i.e. the 
tensor xfj_), we use (4.2) to represent the second relation of (4.1) in the form 

Convoluting (4.3) with ni we obtain 



Substituting (4.41 into (4.3) we obtain 
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(4.4) 

(4.5) 

(ufij = h*x!~*:x"f2p&') 

Here a," is the stress tensor in the plus phase. In deriving the expression for the 
vector h' in terms of u:j, we used the relation 

xpj) f ( =2cL+ a+f'- 
rsT;.* 

3X, + 2p+ 
,ii 

> 

The tensor x_~" and the stress tensor of the minus phase uJ-'j are given by 

Xij- =Xij+ - hi?lj -b(Sij- ?ti?Zj)I= 

D Ij _ = x_& (x$+ - h’(nk - 26) .+ +_ @) _ h('nj) _ 

6 (2j - &I j)) = 2p_rij IPl3 a _ a-_ _ 
4-P+ 1 - Zp_n'n' fR - 6) -+- 

P_ a_ij + 
Q+ 

Irl_’ nk cafhn j J. ai”n+j 
P+ 

i4.6) 

(4.7 

The equilibrium temperature can now be found by substituting the formulas obtained into 
the last relation of (4.11. 

The formulas of Sect.4 can be used to solve some 
boundary value problems. Let us consider, as an example, 
the two-dimensional problem of heterogeneous two-phase 

We shall consider the solutions for which there are 
corresponding affine deformations of both phases separated 
by the planes. Let us denote by 6 the angle of inclination 
of the separating plane and by O+ the values of the 
stresses all * in both phases. Using the condition of 

homogeneity of the phases, we conclude that the stress tensors in the phases have the form 
(0, b = 132) 

(4.8) 

The relations 14.71, (4.81 lead to the following equation for determining the quantities 
cr, and 9: 2p_ (p*i._---*~_) 

PC + p+ (3i.*+z~,)(i._+zcL_)(~+- p) + (4.9) 

Lcq 
k_- 

2@-(3i.- -L2P-) _ R sio.9=9 
i._ - P.. 

(% - CP - R’) sin e ~05 e - 0 

Here we have used the notation 

e=Jk2!L 
Li, ’ g=c,cot*9-Z2rsin6cose--ssin*8, (t.!Ot 

Using (4.101, we can write the conditions of zero load on the surfaces F1= const in the 
form 

a_= = R - cq= 0 (4.11) 
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When A=r=O, conditions (4.91, (4.11) take the form 

D cos* e = 0, D sin e cos e = 0 (4.12) 

D-t 
c (A- + 2PJ 

6&K_ o*sin~9= 0 

D&- -&- IO+ - cy-$-) 
[ I 3+.sinle- 6 

System (4.12; has the following solutions: 

rj sine = 0, 8+ = - 66 /[ -&]I (= a_) 

2) eose=O, 8+=- 6~+6~~+~~ (=$u_) 

Thus we have for the first(second) solution the corresponding interphase planes perpen- 
dicular (parallel) to the z1 axis. 

1. 

2. 

3. 
4. 

5. 

6. 

7. 
3. 
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CONFIGURATIONAL FORCES IN THE MECHANICS OF A SOLID DEFORMABLE BODY* 

G.P. CHEREPANOV 

A configuraticaal force /l--3/,which always originates in a deformable 
solid whenever the stress source mcves, represents physically the 
contribution of the external strain and stress fields to the dissipation 
of enerz- _i t taken per unit path length of the source. When the stress source 
(sing,<larlty) is internal, the configurational force is the fundamental. 
paramerer controlling the process of motion and it can be called a driving 
force. Linear singclarities of the type of crack and dislocation contours, 
point singularities of the type cf small cavities and inclusions, etc. 
are examples of each cases. If the singularity is generated directly by 

external forces, the configurational force plays an auxiliary role and 
such cases wiil be exsmined below, This is the problem cf the motion of 

a smali solid body over the surface of a half-space, and different schemes 
of wedge motion in an unbounded elasto-plastic space. 

1, Motion of a small solid over the surface of a half-space. Let a concen- 
trated force (T, 0, -K) move at a ccnstant velocity V over the surface of a solid half-space 
z (0 fFig.l?, stretched by a stress u,~. Its surface is considered to be free of external 
loads, with the exception of the point 0 moving with the velocity V of the origin. Since the 

field of quasistatic stresses and strains in a solid is stationary in the OzF2 coordinate 

system, the following equality /l-3/ holds for any materials for any finite deformations: 


