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Equations (2.24) with inhomogeneous terms (3.11) do not contain any nen-equilibrium para-
meters which characterize only the gaseous systems. Therefore they can be used to study non-
eguilibrium, large-scale fluctuations in fluid flows.
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ASYMPTOTIC FORM OF SMALL DENSITY DIFFERENCES IN THE PROBLEM
OF COHERENT PHASE TRANSFORMATIONS”

M.A. GRIKFEL'D

Equations describing {in the lower approximation! the equilibrium con-
figurations under heterogeneous, coherent phase transformations in an
elastic, one-ccmponent medium, are derived for the asvmptotic case of small
density differences. Both phases are assumed to be isotropic by virtue of
the multiplicity and certain computational simplifications. It is shown
that, to a first approxiration, the equilibrium temperature of the non-
hydrostatic, two-phase configuration is identical with the temperature of
phase equilibriurm of the hydrostatically stressed phases in some reference
configuraticn. 1In & higher approximation the system of equations of
equilibrium obtained is identical with the equations of the classical
linear theory of elasticity, although, on the whole, the problem remains
essentially non-linear, since it contains an unknown boundary and certain
boundary conditions on it, quadratic with respect to the displacement.

The conditions obtained are further used to find the scolutions of certain
boundary value problems.

The conditions of equilibrium obtained in /1, 2/ under cocherent phase transformations
with slippage, represent special boundary value problems for the equations of the non-linear
theory of elasticity, with unknown boundaries. The presence of unknown boundaries of contact
between the different phases aggravates the difficulties of the already complicated problem
of describing the equilibrium configurations of non-linearly elastic materials (e.g. in the
simplest problem of this type for a liquid system where the problem reduces to that of o
determining the eqguilibrium values of the pressures, temperture and phase masses, the equilibrium
*prikl.Matem.Mekhan.,49,4,582-592,1985
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conditions degenerate intc a complex, non-linear algebraic system), For this reason, the
asymptotic form of a small difference in the phase densities, developed in the present paper
using the case of coherent phase transformations in a medium that is isotropic (in both phase
states) is of considerable interest.

1. The conditions of equilibrium under coherent phase transformations in
a simple, elastic, one-component material. Following /1/ we shall carry out the
investigation using the Lagrangian variables ' and transforming somewhat, for convenience,
the relations obtained in /1/. We shall distinguish between two isotropic elastic phases by
labelling them with a plus and minus sign. Let us consider a homogeneous, elastic material
in the plus phase state, and assume that the Lagrangian ' coordinate system is affine in the
reference configuration in question, with the basis Xx;,. Let us next consider a second homo-
geneous reference configuration of the same material, in the minus phase state, and assume that
the passage from the first configuration to the second is accompanied by the corresponding
volume expansion-compression deformation with similarity factor d, so that the corresponding
displacement field W (r) of the material point with coordinates z' is given by the formula
w = {(d — 1) 2'x;.; the basis of this configuration is given by x;. = dxi,.

Let us consider, in r' coordinate space, the surface t — 2 = 7' (}¢), @ =1,2. According
to /1/ the problem of describing the equilibrium in the case of coherent phase transformations
reduces to determining the equilibrium temperture @, the unknown boundary t of the plus phase
displacement field u, (z) on one side of !. and of the field of (additional) displacement of

the minus phase u_(z) on the other side, so that the conditions a) and b) - d) would hold
within the phases and on the interphase boundary respectively
8) pii=0, b)[U')*=0, ¢ [p"]*n;=0, &) [v']*nm;=0 (1.1)

Here pi’' is the Piola-Kirchhoff stress tensor referred (for both phases) tc the reference
configuration of the plus phase; the index following the coma denotes partial differentiation,
which in this case is identical with covariant differentiation, and U;ti are the components
of the total displacement fields in the basis x; (U, = u,, U_ = w 4+ u_). We further have

N ‘—-;:T O AR (1.2)

where ¥4 dencte the free energy densities of the phases per unit mass and 71+ (xi"'), my are
metric tensors and mass densities of the phases in the reference configurations. We denote
by n; the components of the unit normal to the image of the surface f in the reference
configuration of the plus phase. Using the metric volume and surface tensors corresponding
to this configuration, we carry out covariant differentiation and "juggle” the indices (unless
the contrary is clearly indicated).

To close system (1.1) (despite the condition that the absoclute temperature is constant
and the specifying of the particular form of the function ¢), we must also specify the conditions
either on the outer boundary of the body, or at infinity.

Let us denote by wu;-* the components of the field u_ in the basis «x;.. The free enerqy
¥ of the minus phase will conveniently be specified in what follows as a function of the
absolute temperature § and of the displacement gradients uf;. However, the derivatives of
this function are connected with the tensor p_! introduced by projecting the stress tensors
with vector components P /3/ onto the basis X;., in a vert complicated manner. To overcome
this difficulty, we shall introduce another Picla-Kirchhoff stress tensor p i by expanding
P+ over the basis of the reference confi garatlon of the minus phase zx,... The tensors p;ji
are connected with the free energy densities v (ujig.8) by the usual relations (here and
henceforth we shall write, in order to save space, the similar formulas simultaneocusly for
both phases, with the asterisk indicating the minus phase only)

P =m0y (7,13, 8),0u, 11
Standagd geometrical relations lead tc the following relation connecting the stress
tensors: p'l = p* ‘m, a’m_.
Expanding ¢:th:t in series in arguments u},; and T = 6 — 6°, we obtain

) ) i, * RTI ,
Yo =¥+ + You T = ¥a'lui jo - Yoeoa T + Yebus, jo T + (1.3)
1/ 1].; 'u, ,iuk + ...
Lol i *
Py =my (W L T - ¢l 1y L e T2 L
Xl * . ijkimn #
1])” Uy, I:tT 1 \{,” mnuk Iium‘"ﬁ:) - ...

Assuming that the phases are isctropic and the reference configurations are undistorted,
using the relations given in /4/, we can write the expansion coefficients in the form

m:‘#,i” =—ps"z4"  myvyeh = — Kiasz.Y (1.4)
gkt "y
ma¥ " = py® (23"l — 25 M2) + hpay Vol 4oy (e 22
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where p.° Ay, pg, K., a, are the pressure, isothermal Lame’, and the volume compression moduli,
and the thermal expansion coefficient in the reference configurations of the phases at the
temperature 6°

2. Asymptotic form of the small density differences. We assume that both
phases in question are isotropic, the reference configurations given above are undistorted,
and that at the temperature 6° the initial pressures p+° and the specific Gibb's potentials
are the same

PS=pl=p: $°+pim =y"+pim_ (2.4)
We further assume that the similarity coefficient is nearly equal to unity
d=1+4+08g 6~1, e (2.2)

and the displacement fields at the outer boundary are of order e.

In this situation it is natural to expect that an equilibrium configuration may exist,
containing both phases, and that the parameters of both phases will differ little from the
reference parameters, so that the phase displacement fields ug, the equation of the interphase
boundary z' (%) and the increment in the equilibrium temperature T will all be represented
in the form of series in the small parameter ¢

joo

Uy = eNups, =3 ENI‘jN(g), T= 3 eNTn. (2.3)
N=1 N=0 N

=]

Let us now derive the equations for determining the first non-zerc terms of these expan-
sions. We note that the functions iy () are defined to within an arbitrary coordinate sub-
stitution on the surface I2, To localize this ambiguity in the function z, (§) we shall seek,
in what follows, the eguation of the surface in the form

o
Z B =) +n' @) T eNan (@) (24)
=1
where n,’ are the ccmponents of the unit ncrmal to the surface zoi (8) and the series yieléds
the distance from the surface 2 (£ & to 2., along the normal tc the latter.
The following relatiocns follow directly from geometrical considerations and expansions
(2.2), (2.3):

Ny

Tio=xi. (4 + &), - =dr;. = (1 — 286e + 8%2) 454, (2.5}

r V= (1— 26 = 36%) 1.V~ 0 (), ul=ui (1 + 8¢),
Ul=u'=bed', wi=w.r'=be
m_=m_{1— 0 3=m, (1 — 36 = 66%) + o (e?)

Combining relatiens (2.1}, (2.5 we obtain
Y=yt L p(mit—mIy =y > —3pse (1 + 8e)'m, + 0(e?) (2.6}
(1.3,

Combining further relations (1.4, (2.1)—(2.6) one after the other, we obtain

I AR e SN ) @7
plle=—pr e (pll — 2, W) — Ko Tae P+ 0,2 0t = 200 2) + o (e)
ik o i ij R i
R LA R o P LA B
. < i 4 R )
Y= t'i‘f”rl—‘m_f(:% l"")J o (€)
p_~” =d -:-f pfji = — pzv"j —e{p (v,’l.i_ — Ifjv.}‘,k_ — 261’”) —
Koa T+ '/._r*ijv.h;k- - 2;1_v(.i,"ﬂ-) (3]
Vo e g e - e88,0) =%,

13 -!\1}-7‘11" - ___mp Wi—z "l — 261,”)} o), vVi=u
i +

Let us substitute relations (Z.7) inte (1.1). Egquating the coefficients accompanying ¢
we obtain, respectively,
a) (hz, ity + 2ut),; =0, by V]t =62k (2.8}
) [p@li—z %t ) — Kalz,7 + Az, E 20t ] g = — 2pdnly

d) [ 75— (LU — .T_"ijli.k'k) — ¢9T11*ij:l NN jo == — 2p6
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Here and henceforth nj, will denote the coefficient of eM in the expansion of the
components of the unit normal to the surface separating the phases. We can eliminate from
the last two relations of (2.7) the terms containing the initial pressure p, using the relations

[t 2 —noing) =8 (= —ndn®y), [t = 2.9
[P n0m0 + 28, [V07].0 nje= (V¥ x].* — 28) ny

(in (2.8), (2.9) all discontinuities are calculated at the surface azi,),

To prove relations (2.9), we differentiate the second relation of (2.8) in E* convolute
the result with z,*s‘gag (§°’§ is the metric tensor at the surface =%} and use the well-known
identity zfa‘:,"&g“g=:.}*—uoine“. This yvields instantly the first of the relations under proof,

Dropping from it the index X and convoluting the result over the indices /, &k we arrive at
the second relation. Finally, convoluting the first relation of (2.9) with »n; and using the
second relation, we confirm the validity of the third relation.

Using (2.9) we reduce the last pair of relations (2.8) to the form

Az, i+ a0t *np =0, [$e]*Ta=0 (2.10)

The second relation obtained leads to an important conclusion: when [$e] *5 0 (which
represents the general situation in the case of phase tranasitions of the first kind when the
latent heat of transformation is different from zero), then the temperature of phase equilibrium
in a heterogenecus configuration is equal, to a first approximations, to the reference tempera-
ture 6° /5/. Therefore to determine the temperature effect we must determine T, This can
be done by eguating terms of the second order of smallness e in the last relation of (1.1).
Cumbersome calculations yield the formula

m, [$)7 T2+ Vo [rvl 5 206800 5] — W’ 20000 9]t renge = 280+ 2p B0t oy, (2.21)

This functional eguation also plays a major role in determining the position of the un-
known interphase boundary /5/. We shall therefore present here the key concepts and formulas
necessary to determine it.

Let us differentiate the last eguation of {1.1) covariantly twice with respect to the
scalar parameteér & /6/ (naturally, after substituting the series (2.3)). Taking into account
relations (2.1), the homogeneity of the reference configurations and the properties of the
86t - derivative we obtain, for e=4¢,

{L e T i e ’-} [ T by
2 or? _Ten ok _'- e d: J- &:

{¢ is the "velocity" of the boundary induced by varying the parameter e
Using the relations (1.2)—{1.4), (2.3), (2.5)—1(2.7}, (2,10} we obtain (e is the symbocl
of covariant differentiation with respect to the coordinate E* on the surface i, ()

=0 (2.12)

fe=0

dn
= o= —L - @ -
"t[€=0_"i0‘ cIEsO”‘C" [ L=o" %670 (2.13)
From the relations (1.2)= (1.4, (2.3)={2,7}, (2.10! we cbtain
s
A £ i ik .
e, Lo= o v {2.14}
RE )
ot lesp m., RERY:
. ij
0‘\)) _ I4 14
ot kple=p = m, (g =T g7
1 e’ T s
TTTHOE feme MidT0 T AT T TG g Moo =
. i 2 : 2 Ls
LR S S Y N SRS PRS- % B =0 L £
Yol =BT, 4 é’.,...”ao"‘;o - del % éb‘)_’n..n).o

£ K kit

e = m¥eaTs + =3 gty = Baranat e — G ol +

2y Py Ty mianie P D — Wy T 0 gatd g — gl — (0 Mg By b T gy
Using (2.13), (2.14) we write (2.12) ir the form
Wl m, To4 5 [hel o 4 2ueiy 32— hf 0?7 2t Mo, S ngne -+ u8el i+ 20 808 8 nn T (2.15)

ez : o4 i ']
Plull)" Pilp— ful ]+ 5 {U:J."j_ i ”..51’?,)']-‘ et
[u:“f‘uk"_ — vf"_t.-’f.k]_* rygnjy -+ 8 bl — bu,‘.?_nmn’.o Faing ngng X

i N ij o i R ij
(0] 2~ v 2 Lt =20 g7 Songy ([0 ] — 07y W) 4 282, 7)) = O
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(remembering that all discontinuities are calculated at the surface s (})).

We note that when p=0 (2.15) instantly yields relation (2.11). However, to show the
universal character of the latter we must show that the coefficient accompanying p in (2.15)
vanishes. Substituting {2.2), (2.3) into (3.1) and equating the coefficients of ¢, we obtain

[”{-‘\I-f [l’ J}—* "Jal—bnfoal (2.16)
Let us now differentiate (2.16) in E* and convolute the result with the tensor z! mEW

Using the notation m,—-qmgoJ% ~Ri oty Where b, is the coefficient of the second quadratic
form of the surface z', we obtain

; ¥ L NP : ; ; j i i "
[ul, el =gy 4 l:*_"j,]_ (r M ”o;‘”oa) nha + {cf’j}_* { lza’?ﬁ)nﬂ: —ap?’y = 8 (alzar’f‘?nfﬂ—bhal) (2.17)

Neglecting the index X in (2.17) and convoluting with respect to i,k we obtain a relation
which can be reduced, using (2.9) and the identity 2 nw=0, to the form
l“f,%g]-’ T d [“‘ i)t — [l'.i, ,‘]-*“1; a,-zic.!g"?o + al"io”ojnul [Uijz - vf,’f;‘-’ju]J =0 (2.18)
Now we can confirm that the coefficient of p in (2.15) vanishes, using relations (2.9),
(2.18) and . o o .. s
T TIPSR I I DL B NOE) RO PRI R R X SN (2.19)

Relation (2.19) can be obtained from the following four relations:

A2 (lny +2)+ (h'n,n+26)2 (2.20}
Pt = 21, k’n o+l L — l'ij highg o 6) = (h’n,)2

” R h ny o (hTgg)?

Jlrngy = ri{:nzonﬁ " Fpg = 28} + }z’nz' (ezf‘;k_ B h;:nh -4 28)
Here h’—'[f 1.*nt . To establish relations (2.20) we must use (2.9) and the following
expression for the discontinu ity of the prodact
[ab)_* = a_ [b].* = b_{al* + [al.* [B)*

Melting, regarded as a transformation of the solid phase into the liguid phase, can be
referred to a number of phase transitions with slippage, for which the asymptotic form of
small density differences was developed in /5/* (*See also: Grinfel'd M.A. Heterogeneous
systems with phase transition surfaces {(application of variational principles. Doctorate
Dissertation, Institute of Terrestrial Physics, Mcscow, 18983).

It can however be shown, that in the case when one of the phases is liguid, the relations
(2.8, a, by, (2.10), (2.11) lead to eguations obtained for the case of melting in the papers
mentioned.

Indeed, let the minus phase be liquid (p.= ¢) and occupy the volume V within the plus
phase in the equilibrium configuration. In this case the first equation of {2.8) for the
minus phase yields _

tpom=H=const, z&l (2.20)

The first relation of (2.10) can now be written in the form

(7..,:'.;‘_ ,‘.VJ:'J . Zux‘f iy n = A',ano (2.22}
Integrating Eg.!2.21) cver the finite volume V and using the relation {2.8¢c), we obtain
Id
HY =\erh, = \&umo— a&_—éfmm= (223
v H
. A
- L. I . . —
S u:,r’__rrw-—AT nl ‘\ dir_n, =1 QH e -"m—:) (A=30m,)
Purther, using the last relation of {2.9) and first relation of (2.10), as well as p.=0,

we obtain o
ek o 5 200 ) o n = A P2 N men 71 = ot g —28 (2.24)

Now, using (2.24) we reduce (2.11) to the form

2m L Ta= gl ol g 2uaey b KR 2K H (v, — Almy) = 0 (2.25)

This completes all conditions of equilibrium of /57,

3. Determination of the parameters of the ellipsoidal equilibrium inclusions
of the solid phase. We shall consider, in the small denisty difference approximation, the
problem of bounded egquilibrium inclusions of the solid phase for the case of coherent trans-
formations and the displacement field u', linear at infinity (in the case of phase transitions
with slippage the problem was discussed in /5, 7/**(**See the previous footnote)

lim v} (2) = x}jz/ (3.1)

E3e
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We shall seek an equilibrium inclusion in the form of a triaxial ellipscid, and the field
v's in the form (compare with /7/)

vi_=ﬁ”I‘i, Ui+=‘Z’T (p'(+u,-jzj (3.2)

where ¢ is the Newtonian potential of the corresponding ellipsoid of unit density, and f;
and y are constants. The inner potential of the homogeneous ellipsoid with the centre at the
origin of coordinates is a quadratic form

@ = o — Yow;yz'z?, o, ;; — const (3.3)

Its coefficients are defined by the oriented and form of the ellipsoid. Knowing them,
we can sclve the inverse problem and find the orientation and magnitudes of the excentricities.
Inside and outside the body the potential satisfies the equations

8) hi=—4n, b)oi=0 (3.4)

so that mf,»= 41, Moreover, the potential ¢ vanishes at infinity (together with all derivatives),
is continuous at the boundary Z of the ellipsoid together with the first derivatives, and

the discontinuities in the second derivatives at the boundary X satisfy the compatibility
relations [@.;;I_* = 4nN,N; (N, is the unit normal to the ellipsoid surface)., It can be shown

that the functions v,4 defined by relations (3.2) satisfy the equations of egquilbrium and

the boundary condition at infinity. Combining the compatibility relations with (3.2), (3.3},

we obtain

Ca ,
Vi, - iI=Y(AiA1_F“’u’)"T‘ Aig (3.5)

Using (3.1)—(3.5) we can write the second boundary condition of (2.8) and the first
condition of (2.10} as linear forms of the coordinates z' and as components of the unit normal
N, respectively. Since the choice of these quantities on the ellipsoid surface is arbitrary,
we conclude that the necessary condition for the solution cf the type shown to exist is, that
the following relations connecting the constants hold:

I S S ¥ BT LF RN oL 3.6
ekl LB - b 0 (3.6)
N . i N
b izt L 2u i = Quy (xu _ %—T) — B r 2y BN =0 3.7)
We shall consider the relations (3.4), (3.6), (2.7) as a system of equations in o'/, B/, ¥.
From (3.6) it follows that ({lij] is the symbcl of alternation)
PLii) = »tii) (3.8)
Symmetrizing system (3.6), multiplying it bv 2u_ and combining the resulting expression
with (3.7), we obtain
s Lk 5 k a
. R, =k B - 2u (= s
prin = ZRT— =Bt (3.9)
Combining (3.6} and (3.9) we have
ij 4T 1, a5 i
w =—.I.[" D—F -1z (3.10)
It remains to determine the ccnstants y and f. Tc do this, we ccnveolute (3,9, (3.10)

over the free indices. Using (3.4} we obtain a system whose sclution yields

(K. —K»h, —3K_8 8 (Ko s, ) %%y — 4p b
Ao+ ip, ' - 3K_ +ap,

Y=

3.11)

In order for the functicns (3.2) tc provide a solution to the problem of phase equilibrium,
it is alsc necessary that the relation (2.11) should hold at all points of the ellipsoid surface.
Using the relations (3.2), (3.5), (3.8)=—(3.11) we confirm that the latter requirement will be
satisfied, provided that the temperature T, is given by the formula (o'’ denote the stresses
at infinity)

— 2m_ [e)* Tom=gziz (01 + E:T‘ [3(K_H_ 2u,y —;Tf: a?k)’-;- (3.12)
b
4P¢Y(K_H'~P,?— T O’fk)] + K H*—
1 k A
2KH (5ol — )

o= "2+ 2u w0



454

The solution shows that in the case in question the stress in the ellipsocidal including
is hydrostatic, and the equilibrium temperature, the form of the ellipsoid and the stress state
outside it, are all described by the same relations as in the case of the transition of an
isotropic solid to the liquid state. In this connection numercus other relations ocbtained in
the papers cited alsc remain valid.

We note that the posssibility of constructing solutions with the inclusion of a new phase
in the form of an ellipsoid, is connected only with the condition of coherence, the isotropic
character of the matrix, the possibility of approximating the free energy density of the matrix
by expanding the second-order infinitesimals in the displacement gradients, and the constancy
of these gradients at infinity. At the same time, the assumption of the isotropic character
and the linear elasticity of the inclusion, and of the special character of the affine
"characteristic” deformation 4A,;, does not in any way represent a significant restriction
when constructing solutions of the type shown., In particular, in the case of isotropic phases
but of an arbitrary intrinsic deformation tensor, the relations obtained in /8/ can be used
to find the following formulas generalizing (3.9), (3,10):

5<i5>=3i55—"'-———mﬁ_“ - Ban (3.13)
Bussy = %risy — Apa
0):} ‘s Q.
‘Z.“V*’:Q”“"xwll
— Ao +20_ ’MJ.'ZP'-; k [ K
L=r—2; ( R T o A"‘)
15 s 30 o iz AR
0 T d

(K.— &) 7'}.:;\- - X_ﬁ}f_,;

oL gy
v A -+ ‘I“pi—
From (3,13} it follows that the ellipsocid is coaxial with the tensor Q“. and the latter,
in turn, is coaxial with the stress tensor at infinity in the case of melting (p_= 0),or in
the case of intrinsic tensile volume deformation A;; = 8z;;, In the case of volume expansion

at infinity the ellipsoid is ccaxial with the intrinsic deformation tensor Ag;pn. In the
remaining cases the orientation cof the ellipsoid is governed by both factors, by the character
of the deformations at infinity, and by the intrinsic deformation of the transformation.

4. Heterogeneous configuration with homogeneous stress-strain states of
the phases. First we use the relations of Sect.2 as the basis for investigating the problem
of equilibrium coexistence of the half-spaces composed of different isctropic elastic phases
subjected tc affine deformation. Thus, let the plus(minus) phase be subjected to affine
deformation r* = x..z’ % = xil7/) relative tc its reference configuration, where xj. are
constant tensors. If the above-spaces are in the state of complete thermodynamic eguilibrium
alcng the plane b,r' = b, {(we can assume without loss of generality that the vector &, is
normalized to unity and therefore coincides with the unit normal to the plane n;), then by
virtue of the conditions of eguilibrium (2.8}, (2.10), (2.11) the fellowing algebraic relations
must hold (the eguations of eguilibrium within the phases are in this case satisfied automati-
cally):
=0 (4.1}

[aufyg? = 2umid) Yy =10
m, [§el ¥ Te + 2 {?‘nf‘ix.’"j + Zuxtiing]t— [F.x."}',xi" -+

pr(ff')x};’:]_*nlnj e A Bl = 2u 8% Vnin; =0

Differentiating the first of these relations with respect to the coordinates in the plane
t*  and convoluting the result with 7. we obtain

[Pl = kg = 8 (g — ning)  (hy==[x,] ) (4.2)

only six of the nine relations of (4.2) are independent, since {4.2) becomes an identity
when convoluted with the vector nb. Consequently, the ten independent relations appearing
in the last pair of system (4.1) and (4.2) connect 18 constants x¥, two independent components
of the unit normal n;, and the increment in the equilibrium temperature T,. Thus, to determine
uniguely the piecewise homogeneous equilibrium configuration of the half-spaces in question,
we can specify arbitrarily e.g. the affine deformation of the plus phase and the orientation
of the boundary of separation n;.

To determine to conjugate egquilibrium stress~strain state of the minus phase {i.e. the
tensor x.), we use (4.2) to represent the second relation of (4.1} in the form

(1 %2 4 2]l — 2o W — 2u_htind — 264 2" + 28p_ @V —n'nf)yn;=0 (4.3)

Convoluting (4.3) with n,; we obtain
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Wy = — e (M + 2 Wy, + 260.) (4.4)
Substituting {(4.4) into (4.3) we obtain
i Ao4p. Bo[AZ
W = ‘}l-..(?\- t_pgp_ ( ST xk++2[}1], "‘”n,n, (4.5)
261_’;1- )___2(;1]_ X, ‘R— {M- o,n,
R= Bodo — A

TR G O x‘.‘-s- fp- +

[l O+ )
By (Ao +28)
(iz‘))

(047 =hyxipa’ + 2uyn

o¥inm,

Here oj" is the stress tensor in the plus phase. In deriving the expression for the
vector k' in terms of 0,7, we used the relation

k
(;,) — 1 (U 4 3«»3.;‘-‘ zij)
o, M 3hy + 2p,
ij

The tensor x'/ and the stress tensor of the minus phase o_¥ are given by

Nije =i = kit — 8 (ziy— nin ) = (4.6)
Rijo — MMy (—— % ®e + 2[p)t winn, —
v-_(iﬁ._ j,f_p_) [y );x_ S- -: ;;; - — bz, + [H L
0 == _z' (Y, — Wny — 26) + 2u_ (8P honn —_ 4.7
§(zV —n'niy =2p s (R —_ T{%:—) —2un'n’(R—8) +
—3—:— o, 4 l’-:—xlfi ny (0¥ n? + of¥n')

The equilibrium temperature can now be found by substituting the formulas obtained into
the last relation of (4.1).

The formulas of Sect.4 can be used to solve some
boundary value problems. Let us consider, as an example,
the two-dimensional problem of heterogeneous two-phase
equilibrium in a strip loaded along the external boundaries

xl n #¥ = const by a constant normal force o® = —p and tangential

z3 g force o =1, with free surfaces s =copst (see the figure).
\ We shall consider the solutions for which there are
z corresponding affine deformations of both phases separated

by the planes. Let us denote by € the angle of inclination
cof the separating plane and by o, the values of the
stresses oY%, in both phases. Uging the condition of
homogeneity of the phases, we conclude that the stress tensors in the phases have the form
(e, b=1,2)
1 T I
bo¥is| * p}f (48

The relations (4.7), (4.8) lead to the following eguation for determining the guantities

o, and 6 2
. P (ahe = hu)
Pe T W Bhy + 2000+ i) G+ P F @9
A_cg 284, (35 - 20) . _
pa— T — Rsin?@ =0

(¢8, —¢cp— R')sinBecos =0

Here we have used the notation

Lo b g =0, c08%0 ~275in 6 cos 8 — psin28, {4.10)

By
2p. WAL e ALl Mo o iz
Rt T G- -G 2t a ry

£ ==

Using (4.10), we can write the conditions of zero load on the surfaces 23 = copst in the
form
eB =R —¢cg=20 (4.41)



456

when'p = t=0, conditions (4.9), (4.1l) take the form
Deos?8 =0, DsinBcosf=20 14,123

A+ 2
D+%—)~c+sinse= 0

1 AT+ ¢ (A - .
DE_—G—[TX—]-O* ——"—‘3—}1_-2—-7"&‘-)'6*5111’6—-6

System (4.12) has the following solutions:

1) sinB =0, a,:——ﬁé/[T}}?—]: BTN

2) cos 6 =10, 5*=-5l-\+*"(;2;: %:')'l (2%5')

Thus we have for the first(second) solution the corresponding interphase planes perpen-
dicular (parallel) to the 2 axis.
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CONFIGURATIONAL FORCES IN THE MECHANICS OF A SOLID DEFORMABLE BODY

G.P. CHEREPANOV

a configuraticnal force /1—3/, which always originates in a deformable
solid whenever the stress source moves, represents physically the
contribution of the external strain and stress fields tc the dissipation

of enercy, taken per unit path length of the source. When the stress source
(singularity) is internal, the configurational force is the fundamental,
parameter contrclling the process of motion and it can be called a driving
force. Linear singularities of the type of crack and dislocation contours,
point singularities of the type of small cavities and inclusions, etc.

are examples of each cases. If the singularity is generated directly by
external forces, the configurational force plays an auxiliary role and

such cases will be examined below. This is the problem of the motion of

a small solid body over the surface of a half-space, and different schemes
of wedge motion in an unbounded elasto-plastic space.

1. Motion of a small solid over the surface of a half-space. Let a concen-
trated force (T, 0, —N) move at a constant velocity V over the surface of a solid half-space
<0 (Fig.l), stretched by a stress 0,*. Its surface is considered to be free of external
loads, with the exception of the point O moving with the velocity V of the origin. Since the
field of quasistatic stresses and strains in a solid is stationary in the Ozyz coordinate
system, the following equality /1-3/ holds for any materials for any finite deformations:
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